Friday, December 28, 2007

Robotics

Robotics is the science and technology of robots, their design, manufacture, and application. Robotics requires a working knowledge of electronics, mechanics, and software. A person working in the field is a roboticist. The word robotics was first used in print by Isaac Asimov, in his science fiction short story "Runaround" (1941).

A robot is an electro-mechanical or bio-mechanical device that can perform autonomous or preprogrammed tasks. Robots may be used to perform tasks that are too dangerous or difficult for humans, such as radioactive waste clean-up, or may be used to automate mindless repetitive tasks that should be performed with more precision by a robot than by a human, such as automobile production.

Wednesday, December 19, 2007

Networking and the Internet

Computers have been used to coordinate information in multiple locations since the 1950s, with the U.S. military's SAGE system the first large-scale example of such a system, which led to a number of special-purpose commercial systems like Sabre.

In the 1970s, computer engineers at research institutions throughout the United States began to link their computers together using telecommunications technology. This effort was funded by ARPA (now DARPA), and the computer network that it produced was called the ARPANET. The technologies that made the Arpanet possible spread and evolved. In time, the network spread beyond academic and military institutions and became known as the Internet. The emergence of networking involved a redefinition of the nature and boundaries of the computer. Computer operating systems and applications were modified to include the ability to define and access the resources of other computers on the network, such as peripheral devices, stored information, and the like, as extensions of the resources of an individual computer.

Wednesday, December 12, 2007

Nanotechnology

Nanotechnology refers broadly to a field of applied science and technology whose unifying theme is the control of matter on the atomic and molecular scale, normally 1 to 100 nanometers, and the fabrication of devices within that size range. It is a highly multidisciplinary field, drawing from fields such as applied physics, materials science, interface and colloid science, device physics, supramolecular chemistry, chemical engineering, mechanical engineering, and electrical engineering. Much speculation exists as to what may result from these lines of research. Nanotechnology can be seen as an extension of existing sciences into the nanoscale, or as a recasting of existing sciences using a newer, more modern term.

Two main approaches are used in nanotechnology. In the "bottom-up" approach, materials and devices are built from molecular components which assemble themselves chemically by principles of molecular recognition. In the "top-down" approach, nano-objects are constructed from larger entities without atomic-level control. The impetus for nanotechnology comes from a renewed interest in Interface and Colloid Science, coupled with a new generation of analytical tools such as the atomic force microscope (AFM), and the scanning tunneling microscope (STM). Combined with refined processes such as electron beam lithography and molecular beam epitaxy, these instruments allow the deliberate manipulation of nanostructures, and led to the observation of novel phenomena.

Thursday, December 06, 2007

Cellular network

A cellular network is a radio network made up of a number of radio cells (or just cells) each served by a fixed transmitter, known as a cell site or base station. These cells are used to cover different areas in order to provide radio coverage over a wider area than the area of one cell. Cellular networks are inherently asymmetric with a set of fixed main transceivers each serving a cell and a set of distributed (generally, but not always, mobile) transceivers which provide services to the network's users.

Cellular networks offer a number of advantages over alternative solutions:

* increased capacity
* reduced power usage
* better coverage

A good (and simple) example of a cellular system is an old taxi driver's radio system where the taxi company will have several transmitters based around a city each operated by an individual operator.